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INTRODUCTION 
 
Mining operations have been seen by environmentalists and conservationists alike as causing problems. Undoubtedly, 
the operations of mineral and coal producers have caused varying degrees of environmental damage in mining areas, 
which are often located in remote regions. Much of the concern has been focused on the concurrent and subsequent 
physical and aesthetic effects that their operations have had on the land, as a basic resource. Mining activity is only a 
temporary occupier of the land surface and, hence, is of a transient nature. Although active mines at any particular time 
are not as widespread as other land uses, they dramatically change the landscape and tend to leave evidence of their past 
use. Thus, results of abandonment or closure become most conspicuous to the general public. 
 
Space Technology can be a cost-effective information tool for: 1) mine operators (at planning and restoration stage) and, 
2) for local/national authorities to preserve natural resources and improve the local socio-economic activities [1]. Space 
technology has caused a quantum change in man’s ability to monitor and understand the Earth, by the use of sensors, 
which gather the data from which global exploration and development have benefited over the past 20 years. Remote 
sensing is the gathering and interpretation of data on any physical feature without making contact. 
 
The information is acquired by advanced sensor systems that measure and record the energy at different wavelengths of 
the electromagnetic spectrum. The sensors, mounted on orbiting satellites, transmit the information to Earth, where it is 
stored permanently for future use. 
 
The remotely sensed data then are processed on an appropriate computer system to produce digital photographs or false 
colour images. The resulting information is used in resource exploration and development including the creation of 
base-maps, identification of exploration prospects, planning operations, location of sites exploration and delineation of 
environmentally sensitive areas requiring extra surveillance to monitor any possible impact from exploration [2]. 
 
Remote sensing/GIS is a technology most often associated with long-term management of geospatial data and, 
therefore, has been of limited interest or profitability to any one of the above-mentioned distinct groups associated with 
a mining project. This is especially true since each group has been reluctant to pay for capital improvements, which 
would benefit other groups but for which it may not be credited or reimbursed [3]. Imagery intelligence or IMINT is the 
intelligence discipline comprising the exploitation and analysis of information acquired by airborne and satellite birds, 
cartography terrain analysis to describe, assess and visually depict physical features and geographically referenced 
activities on planet Earth. 
 
IMINT probably can best be described as a product occurring at the point of delivery, i.e. by the amount of analysis, 
which occurs to resolve particular problems, not by the type of data used. For example, a database containing a list of 
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measurements of land use in time obtained from diachronic imagery is information but the development of an output, 
using analysis to determine the type of land-use changes, able to be utilised for the specific purposes of land 
reclamation, could be called intelligence. 
 
THE AREA OF INTEREST 
 
The study area was based on Larco’s open cast nickeloferrous ore mines located in Evia Island, Greece. Their main 
activity is the extraction of approximately 17,000 tons of Ni per year in the form of FeNi. Actually, three mining sites 
(the mine of Pagontas, Sourtzi and the mine of Isoma) have been thoroughly analysed and studied. The anaglyph of 
these areas was comprised of elevations ranging from 0 to1,500m. 
 
THE GEOSPATIAL DATA USED 
 
In this study, three Landsat TM images of the path/row 183/33 were provided, with spring-summer dates of acquisition, 
thus lowering the sun angle variations and reducing shadowing effects. The acquisition dates were 22 May 1986, 29 
June 1991 and 18 April 1997. Additionally, one KVR-1000 image, with two metre spatial resolution was acquired in 
May 1992 to help extract linear earth features inside the mining areas. A 3-D model was provided by a one SPOT Pan 
stereo pair, with a high B/H ratio, pixel size of 10m, and with acquisition date of January/February 1993.  
 
Moreover, general land-use topo maps (1/50,000) and topographic diagrams of 1/5,000 scale were acquired from the 
Hellenic Army Geographical Service (HAGS) and also Geological Maps (1/50,000) from the Institute of Geology and 
Mineral Exploration (IGME), Athens, Greece. 
 
THE METHODOLOGY 
 
An important contribution of satellite sensors to land resource analysis is their potential to monitor changes that occur in 
land cover over an extended period of time. This measure of the change that has occurred can be obtained by comparing 
the brightness values (DN) for each pixel location in a scene with the corresponding values acquired for the same area, 
but on a different date. 
 
However, it is worth noting that differences in brightness values between dates can occur due to sources other than 
those originating from changes in surface materials, giving a potential error in these simple change-detection methods 
[4]. Such sources include the differences in atmospheric conditions between the times of the two overpasses, scene 
differences introduced by seasonal conditions when non-anniversary data is being investigated, differences in sensor 
response between the dates involved and between sensors, if data from different satellites are used. 
 
In this study, the EO data were used to generate digital elevation models (DEM) of mines; to classify for land cover; 
and to monitor land cover change. 
 
The Landsat TM images were processed to derive land use, land cover maps and land-use change maps. The images 
were atmospherically corrected taking inputs from the meteorological data supplied by the Greek Meteorological 
Service and using the ATCOR module from the Geomatica software package. The images were also radiometrically 
corrected by converting DN values of TM sensors into radiance and reflectance values [5]. This is achieved by using 
detector calibration tables prepared for each sensor. This method uses the Radiance programme on the Geomatica image 
analysis system and takes into account a gain and offset, and requires no ancillary data information apart from relevant 

calibration tables. Therefore, brightness values for each TM bands are first converted to radiance (mWm
-2

 sr
-1

 µm
-1

), 
using Equation 1, and then to reflectance values using Equation 2: 

  
 RADi(x,y)=[DNi(x,y)-OFFSETi]/GAINi         (1) 

 
 REFi(x,y)=RADi(x,y)/S.E.I         (2) 

 
where RADi(x,y)=radiance value at pixel (x,y) in band i 

 DNi(x,y)=output digital number for band i at pixel (x,y) 

 GAINi =gain factor used for band i 

 OFFSETi=offset factor used for band i 

 REFi(x,y)=reflectance value at pixels (x,y) in band i 

 S.E.I=solar exoatmospheric irradiance (mW m
-2

 sr
-1

 µm
-1

). 
 

The result of the simple ratio calculations are images whose pixel values vary between 0 and 1. These ratio differences 
were rescaled to a range of 0 to 255.  
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The geometric correction was done using image-to-image registration based on nearest neighbour algorithm, which 
does not alter pixel value for the subsequent classification procedure. Root Mean Square (RMR) error of a pixel size 
was achieved for X and Y axis. 
 
Change detection was performed by comparing the individual classification of TM sub-scenes (1986, 1991 and 1997). 
The classifications were carried out firstly by supervised method based on training areas and, then, by unsupervised 
method based on clustering.  
 
Eight classes were selected including dense forest, moderate forest, sparse forest, scrubland, moderate industry built-up 
area, settlement built-up area, transportation roads and bare soil. Three change detection maps were also produced with 
the following sequence: 1997-1986, 1997-1991 and 1991-1986. In Larco’s site, the pre-mining cover is considered 
forest and bare rock. The post-mining (restored) cover is forest and water (artificial lake).  
 
As said, the KVR scene was used to extract (on-screen digitisation) the linear features of the mine such as roads inside 
the mines, position and width of exploitation benches, various buildings and other man-made objects etc, that were then 
added to the SDSS. 
 
Except for inside the mining area, a Digital Elevation Model was built using the Spot stereo Pan images. The 10m DEM 
was also corrected, with extra brake lines using the analogue DEM produced by 1/5,000 scale topo maps and additional 
points selected by GPS system. The vertical accuracy managed to be close to 10m, which is insufficient for the inside 
mining area because of a small excavation size compared with the resultant spatial and vertical resolution. 
 
THE SPATIAL DECISION SUPPORT SYSTEM 
 
The Spatial Decision Support System (SDSS) is nothing else but a tool based on multi-criteria decision-making 
(MCDM) techniques in a geographic information system (GIS) environment. The main MCDM technique suitable for 
implementation in a GIS, where a small set of allocation alternatives exists, is the multi-criteria analysis (MCA), which 
involves the evaluation of a relatively small set of allocation alternatives [6]. These alternatives, usually about three to 
five and rarely more than ten, are defined beforehand and are simply evaluated against each other. Therefore, MCA is 
useful when the alternatives are available.  
 
For open mining activities, the SDSS reflects and simulates the major decision steps of a mining expert (engineer, 
manager) during the formulation of a restoration plan. The main restoration options are where to restore and what will 
be the new land use. The SDSS makes a comparison between different strategies based on multiple criteria supplied by 
the user. The way to achieve this is the set-up of a framework for analysis, which is capable of analysing and structuring 
policy issues. 
 
This framework comprises six phases reflecting the series of thoughts of a decision-maker when working on a decision 
for the best alternative [4][6]. Within the alpha phase (A), the decision-maker is supplied with background information 
on the issues and the accompanying problems. In phase B, the main objective and the criteria necessary to measure the 
potential alternatives are formulated. Such criteria are, for example, the cost of levelling; the area of restoration in terms 
of square metres of forest, pasture lake, etc. In the third phase (C), the decision-maker can select a set of actions 
(management options) which, together, form a strategy. Such actions can be considered as levelling and terracing of 
slopes or creation of additional road network, park, lake, etc. 
 
All IMINT derived from either monoscopic or stereo EO data, such as land use, existence of road net, DEM, drainage 
network, slope and aspect of the benches, will be entered into the model, as features.   
 
In phase D, the different actions are combined to create a strategy. In this phase several constraints have to be applied in 
order to score the scenarios against the criteria defined in phase B. Such constraints can be the aspect of the dump and 
exploitation sites facing north, dump and exploitation slope higher than 45 degrees, lake areas, etc. The constraints gain 
values from the features derived from IMINT. The selected strategies are scored on the criteria defined in phase B. 
 
Then, a strategy combined with a scenario is named a restoration case. In phase E, every case will be analysed against 
the predefined set of criteria. In this phase, optimisation models can be applied in order to find the optimal case. In other 
words, there are some objective functions to optimise, in addition to satisfying the requirements on the decision 
variables [7]. Each of the objectives to optimise is typically a measure of effectiveness of performance of the relevant 
system, and could be expressed as a mathematical function of the decision variables. A basic strategy is generated, 
where only a limited number of measures are taken into account and executed towards creating a potential land use. All 
possible strategies are generated and compared to the basic one.  
 
In phase F the decision-maker can change the weights of all the criteria and the resulting scores are recalculated for 
each set of weights. In this way, it is possible to determine the optimal strategy given certain criteria. At the end, the 



 

118 

SDSS calculates the new land use in terms of land-use type, area in hectares and the cost of different restoration 
strategies. The visualisation can be either 2-D or 3-D. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: The Spatial Decision Support System (SDSS) flow chart. 
 
DISCUSSION AND CONCLUSIONS 
 
The application of change detection techniques to multi-date images acquired by satellite systems such as Landsat TM 
is useful for enhancing land-use changes for subsequent visual and digital identification of changed land-use categories. 
Several specific conclusions can be drawn from this study: 
 
a) In order to measure accurately the difference in the brightness values between images of different dates, the images 

need to be registered together to within an accuracy of less than one pixel.  
b) Potential sources of error introduced through variations in illumination, atmospheric conditions and sensor 

response, are responsible for changes in DN values between two acquisition dates. The normalisation of 
radiometric responses due to these errors helps the image-based change detection. 

c) Ratioing or differencing red and near-infrared bands of Landsat TM images, acquired by different dates, produced 
change-images for visual interpretation. Principal components analysis was more useful in highlighting more subtle 
changes but is better suited to visual interpretation in this study. 

d) The post-classification comparison is found to be better for change detection than principal component analysis and 
ratioing for this type of data, since areas covered by each class can be calculated quantitatively. This methodology, 
which has been employed, led to the compilation of land-use change maps for each of the land-use classes. 
However, there are many constraints, which affected the classification accuracy, such as the fragmentation of the 
land, the mixed and multiple land uses. The maximum likelihood classification algorithm cannot cope with the 
above constraints because it does not take into account useful information, such as texture, shape and context on the 
existent land-use classes. 

e) Although the SDSS generally is not run on the Pagontas and Sourtzi mining sites because they are small, the 
success on running it at the Isoma site amplifies that the methodology of the imagery intelligence is useful to 
studying the environmental structure of the mine. The SDSS is capable of indicating where the real world 
restoration has to happen, since its modelled outcomes (dump sites) coincide with the same locations as those found 
in the KVR image and confirmed by the field visits. The KVR image and the visits also confirmed that SDSS was 
correct in selecting the necessary measures, such as terrace creation and tree plantations. 

f) The results from this study point to the need to use better spatial resolution sensors (such as Quickbird, Ikonos-2 
WorldView, Geoeye, digital satellite imagery with metre and sub-metre resolution), and to incorporate object-
oriented information (eCognition approach) into the image analysis process for changing detection in land use. 
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Metre and sub-metre high resolution birds will provide excellent feature extraction information (conveyor belts, 
man-made structures, benches, sparsely planted areas, etc) and 3-D volume generation within the mine site itself, 
which most of the mining engineers and managers need to know, for their restoration plans [8]. Scales close to  
1/1,000–1/5,000 would be ideal for such a market and these kinds of EO data may offer a potential solution, instead 
of costly aerial photography. 

 
The low cost and data collection facility are important advantages that make the methodology, which has been followed, 
acceptable and applicable in Greece, because of the great duration of the sunshine that permits secure covering in fixed 
time intervals. The integration of derived imagery intelligence into a GIS system can be a standard approach for  
pre-mining and post-mining activities worldwide. The utilisation of IMINT information by a SDSS throughout the 
friendly and well-known GIS environment will be fully appreciated not only by mining experts, engineers, and 
managers, but also by administration authorities, whose task is to control and evaluate post-mining activities.  
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